Understanding rubber friction in the presence of water using sum-frequency generation spectroscopy.
نویسندگان
چکیده
Infrared-visible sum-frequency-generation spectroscopy (SFG) was used to study the molecular structure of water between a poly(dimethylsiloxane) (PDMS) and a sapphire substrate. The observation of SFG peaks associated with the dangling surface hydroxyl groups (3690 cm(-1)) and water bands (3000-3400 cm(-1)) indicates that the contact spot between the PDMS lens and the sapphire substrate is heterogeneous. Within the contact spot there are regions where the methyl groups of the PDMS chains are in direct contact with the surface hydroxyl groups on the sapphire substrate. In the other regions, a thin water layer is trapped between the two surfaces with spectral features that are different from that of the unconfined water next to the sapphire or the PDMS surface. The higher adhesion and friction values observed in these experiments, compared to those expected for a uniform thin layer of water trapped between the PDMS and the sapphire substrate, are consistent with the hypothesis that the contact spot is heterogeneous. These results have important implications in understanding the sliding behavior of wet, deformable hydrophobic materials on hydrophilic substrates.
منابع مشابه
Abstract Submitted for the MAR09 Meeting of The American Physical Society Rubber Friction -A Molecular Picture1 ANISH KURIAN, KUMAR NANJUNDIAH, ALI DHINOJWALA, THE UNIVERSITY OF AKRON TEAM — Understanding the relationship between adhesion, friction and the interfacial struc-
Submitted for the MAR09 Meeting of The American Physical Society Rubber Friction -A Molecular Picture1 ANISH KURIAN, KUMAR NANJUNDIAH, ALI DHINOJWALA, THE UNIVERSITY OF AKRON TEAM — Understanding the relationship between adhesion, friction and the interfacial structure has been of significant interest for many years. Most tribological experiments involve measuring friction and adhesion values t...
متن کاملStudy on the Friction of Bored Cylindrical Rubber Protrusions Sliding on Ceramic
The present work aims at reducing the friction of rubber soles sliding on ceramic floorings. Fitting bored cylindrical protrusions with different diameters on rubber soles was proposed. Experiments were carried out to evaluate the performance of the proposed protrusions in increasing friction coefficient at dry and contaminated floorings. It was found that, at dry sliding, friction coefficient ...
متن کاملThermal Analysis of Tire
One of the great enemies of rubber compounds is heat. Heat will cause chemical and physical degradation of vulcanized rubber as well as a considerable loss in its strength. A major source of heat generation in a tire is due to internal friction resulting from the viscoelastic deformation of the tire as it rolls along the road. Another source of heat generation in a tire is due to its contact fr...
متن کاملThermal Analysis of Tire
One of the great enemies of rubber compounds is heat. Heat will cause chemical and physical degradation of vulcanized rubber as well as a considerable loss in its strength. A major source of heat generation in a tire is due to internal friction resulting from the viscoelastic deformation of the tire as it rolls along the road. Another source of heat generation in a tire is due to its contact fr...
متن کاملInterfacial water structure at polymer gel/quartz interfaces investigated by sum frequency generation spectroscopy.
Interfacial structures of water at polyvinyl alcohol (PVA) and poly(2-acrylamido-2-methypropane) sulfonic acid sodium salt (PNaAMPS)/quartz interfaces were investigated by sum frequency generation (SFG) spectroscopy. Two broad peaks were observed in OH stretching region at 3200 and 3400 cm(-1), corresponding to the symmetric OH stretching of tetrahedrally coordinated, i.e., strongly hydrogen bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 130 2 شماره
صفحات -
تاریخ انتشار 2009